

Abstract— HW/SW co-simulation requires accurate timed

simulation of the SW including the Real-Time Operating
System (RTOS) used. One of the most important ways to
simulate complex HW/SW systems is to use system-level
languages. Among them, SystemC is widely accepted in the
designer community. However, the use of SystemC does not
directly support certain RTOS functionalities. RTOS modeling
requires a sufficiently accurate estimation of the execution
time. PERFidy provides such required timed simulation
technology. This paper presents a method that can provide the
designer with an accurate-enough, timed simulation of the
embedded SW taking into account the RTOS behavior. The
solution proposed is based on an accurate model of the RTOS
with a precise simulation of the time-slicing.

Index Terms—HdS, software refinement, SystemC,
performance estimation, asynchronous events, RTOS
modeling, HW/SW co-simulation.

I. INTRODUCTION
s predicted by the ITRS, nowadays SW development
can represent nearly 80% of the total embedded
system design cost [1]. When increasing integrated

circuits complexity, several embedded processors and
application-specific HW may be required. Complex Multi-
processor System on Chips (MPSoC) are used to implement
complete embedded systems [2-3].
 Ideally, the Hardware Abstraction Layer (HAL) should be
enough to encapsulate the hardware dependencies and make
the upper SW layers independent of the underlying HW, at
least from the functional point of view. However, in real
time embedded system design, software development is
deeply dependent on the hardware platform that will support
the software. In MPSoC, the HW drivers using RTOS
functions and interfacing the application SW with the HW
resources dilute any fixed border. Moreover, the real-time
characteristics, specially timing ones, strongly depend on
the HW platform, making any SW to be hardware
dependent. All this code directly dependent on the
underlying HW is called Hardware-dependent Software
(HdS) [4].
 As a consequence of this dependence, HW/SW co-

This work has been partially founded by the ITEA MERCED project and
the Spanish MCYT-TIC2002-00660 project.

simulation is an essential verification task in HW/SW co-
design. SystemC [5] has proven to be an adequate
framework for HW/SW co-simulation [6-7].

Accurate SW simulation can be done using an
Instruction-Set Simulator (ISS). This approach supports
HW/SW co-simulation, integrating the ISS within the HW
model [5]. Nevertheless, the ISS is very time consuming
and, therefore, inapplicable when complexity increases.

Fast SW simulation by abstracting the underlying HW
has been proposed [6]. This approach requires a sufficiently
accurate model of the RTOS and HdS. The most usual
technique is to annotate the code with wait statements
associated with the corresponding execution times [7-8].
The main disadvantage of this technique is lack of flexibility
and inaccuracy of the RTOS modeling.

In [9], a timed simulation technology called PERFidy was
proposed able to dynamically estimate the execution time of
a SystemC specification. The RTOS model was very simple
as it was based on the channel access. The corresponding
temporal behavior was modeled through the execution times
of the HW/SW and SW/SW communication channels.

In this paper, the PERFidy technology is improved with
an accurate model of the RTOS. As the execution time is
estimated dynamically, the proposed simulation technology
is able to precisely simulate asynchronous events. Even the
access to global variables can be adequately modeled and
two different techniques are proposed.

II. HDS MODELING
One of the most important properties of embedded

software is its close link to hardware. Critical properties of
real time, embedded systems tend to be nonfunctional:
timing constraints, fault recovery, power, security or
robustness. They typically have to interact concurrently with
multiple processes and must operate at the speed of their
environment.

Mapping to a specific architecture requires inserting all
the layers from the application interface through the
operating system, I/O subsystem, processors and hardware
modules. Then, a large amount of custom software
developed specifically to be executed over the platform
hardware is needed to integrate these components.

In this context, all software that is directly dependent on
the underlying hardware is called hardware dependent

Real-Time Operating System modeling in
SystemC for HW/SW co-simulation

Héctor Posadas1, Eugenio Villar1 & Francisco Blasco2

1University of Cantabria, GIM, TEISA Dept.
E.T.S.I.I.T. Avda. Los Castros s/n, 39005 Santander, Spain

{posadash, villar}@teisa.unican.es

2DS2, Robert Darwin 2, Parque Tecnológico, Paterna, Spain
francisco.blasco@ds2.es

A

software (HdS). Thus, HdS can be considered the interface
between hardware and software. Common examples of HdS
are:

• Hardware drivers.

• RTOS Hardware abstraction layer (HAL).

• Built-in tests (basic level offline tests).

Hardware dependent software is not only an important
cost factor but even more crucially for product
competitiveness, because it has a dominant influence on
performance, power consumption and safety.

Thus, HdS design and implementation is becoming one of
the most significant efforts in SoC design. At
hardware/software interfaces, components developed in
completely different ways and with very different models of
computation have to be connected. Synchronization
elements and timing characteristics of software and
hardware components have to be combined.

The timing characteristics of software components are
strongly dependent on the RTOS because it defines the
execution order of the different processes. However, this
order cannot be completely predicted taking into account
only the software elements. The hardware components and
the environment can modify software execution with
interruptions, or in blocking communications. Because of
this, HdS modeling requires paying special attention to the
effect of external events on RTOS and software execution.

III. MODELING PREEMPTION IN SYSTEMC
The RTOS plays an important role in embedded software.

Priorities and scheduling policies are key elements to
accomplish real-time requirements. Furthermore, it acts as a
layer on top of which parts of the embedded software can be
implemented relatively independent of the actual hardware
platform.

To adequately simulate the software in SystemC, a
complete new library that allows the designer to model the
platform RTOS is needed. The main features of this model
can be divided into three groups.

The first group is related to priorities and preemption
capabilities. All embedded systems, except the simplest
ones, need to assign different priorities to their processes to
fulfill their temporal requirements. Furthermore, preemptive
schedulers, which avoid priority inversions or processor
monopolization, are used in most cases. Thus, the RTOS
model has to provide a scheduling mechanism that allows
the assignment of priorities to the processes and models
these priorities in the SystemC simulation. This scheduler
has to provide preemptive and non-preemptive mechanisms
such as FIFO or Round-Robin scheduling policies.

A way to implement this is to control which SystemC
processes are declared ready in the SystemC kernel process
list. SystemC runs each delta cycle every process that is not
blocked. The solution is to maintain only one process
unblocked for each microprocessor that the platform has.
The new scheduler has to decide which process is
unblocked and when, depending on the process priorities
and the scheduling policy.

The second group of features is composed of the
synchronization and communication mechanisms. Mutexes
and semaphores are required to synchronize threads and
processes. To communicate threads, global variables can be
used, but for processes more complex mechanisms are
needed. Fifos, pipes and message queues can be developed
to transfer data between processes. Global variables can also
be used if the target RTOS has capabilities to share memory
between processes.

Furthermore, I/O communication mechanisms are needed.
These elements are required for communications between
microprocessors or with the hardware peripherals.
Asynchronous events, such as POSIX signals, also have to
be defined.

Clocks and timers compose the last group of elements. In
the context of RT/E systems, these elements are widely used
in several scheduling techniques, such as RMA (Rate
Monotonic Algorithm). Thus, their inclusion in the
simulation environment is very important.

This implementation of the RTOS model requires a
temporal simulation, since timers or time slices cannot be
modeled in an untimed one. A timed simulation can be
obtained by adding timing parameters to the source code or
by calculating these values dynamically during execution.
The second option is more flexible, and thus, more suitable
to model RTOS and HdS.

Figure 1. Priorities and events

 As commented previously, PREFidy was developed as an
execution time estimation and timed simulation tool. As
shown in figure 1, in PERFidy [9], the code of each process
is divided into segments. Each segment is a piece of code
that starts in a channel access and ends in the next channel
access. The segment is executed in the simulation
in zero time and in one delta cycle. At the same time, its
estimated time is obtained. It is represented in figure 1 with
small rectangles filled with the “code execution” pattern (in

∆T= 40

Time (us)

Task 1
Priority 1

Task 2
Priority 2

T= 0

T=20

T=30

T=40

T=50

T=10

∆T= 0

∆T= 20

∆T= 20

Simulation
time

Estimation

Expected
preemption

Events

Predictable:
Timeout
expiration
T=20 Prediction

T=70

T=80

T=60

T=90
∆T= 10

∆T= 40 Unpredictable:
Hardware
interrupt T=55

Delayed
preemption

Code
execution

Time
annotation

Unexpected
preemption

∆T= 20

∆T= 10

Delayed
preemption

fact they represent a zero time execution, so they should
have no depth). Then, the estimated segment time is inserted
in the simulation using a “wait” statement ().

This method ensures the correct simulation of systems
when non-preemptive schedulers are used. In this kind of
schedulers, segments between synchronization points are
executed without external interferences. However, when
considering preemption, several mechanisms used in the
design process, especially for the software refinement, do
not fulfill these characteristics. This is the case presented in
figure 1. This example represents an embedded system with
two software tasks. Task 1 does the computation and Task 2
does the I/O communication. For this communication, it
uses a blocking function with a timeout. If the data is not
provided before this timeout, the process is unblocked and
the value is estimated using previous values. Then, Task 2
loads the values in a global variable, and task 1 reads them.
In this example, two values have to be obtained and
reported to task 1. The first time, the datum does not arrive
and the timeout is delivered, and the second time the
external datum is provided. Futhermore, Task 2 has a higher
priority than Task 1, so when Task 2 is ready to execute,
Task 1 is preempted.

In general, when a process unlocks a channel, the process
that was blocked in that channel can be executed, and
depending on their priorities, preemption can be carried out.
This preemption can be simulated analyzing the priority of
the process unblocked, and deciding which process has to
continue. However, when a timeout is delivered, if the
priority of the process that is awoken is higher than the
priority of the process that is running at that moment, the
segment under execution has to be stopped.

However, the method of estimation and simulation
presented above does not allow this. The segment is
completely executed in zero time and the temporal cost is
mapped in one step, so intermediate interactions are not
possible (for example, at T=55us in figure 1).

This means that when the interaction is computed, the
segment execution has been done and cannot be modified.
Thus, if a global variable is used by both tasks, functional
results can also be wrong. If a process is in charge of
writing the variable and another process uses these values,
the accuracy of the temporal point and, thus, the order in
which the accesses are done can be critical. This fact implies
that this method cannot simulate the management of
communication mechanisms that have no synchronization
capabilities, such as global variables. For this reason, global
variables are not allowed in this kind of models. However,
this restriction can be valid at the system specification level,
but may be too restrictive when developing the final
software.

For instance, if we have to model a peripheral (e.g. a
speedometer) and we are going to develop the driver, this
problem can appear. It is usual that the peripheral has to be
accessed by polling a pointer that provides the peripheral
data. Thus, each time the value provided is taken, the
current segment is not finished. If the program works with
some values obtained from the speedometer in the same
segment (with multiple pollingin the same delta cycle),
every polling will report the same value. This means that

there is no way to make a correct test of the system
(peripheral and driver).

Therefore, in these cases, the execution order is not
correct. To solve this problem, the code of the task that has
to manage the intermediate interaction is always executed
when the current task has a smaller priority. To minimize
the problem, the time of the preemption is added to the first
task at the end of the segment(), and thus, the
simulation partially solves the problem (see figure 1). The
interactions of the second task with the rest of the system
will be done at the correct time, but for the interaction with
the first process of the example, the result is the same as
executing the second segment of task 2 at the end of task 1.

Summarizing, neither priority management nor
asynchronous events, such as interruptions, can be
considered. The proposed methodology for system design
specifies that every communication needs to be
synchronized. However, throughout the refinement process,
especially for the software flow, this can be too restrictive.
Thus, the methodology has to evolve to accept these
elements.

 The first step to present the solution proposed is to
discuss the elements that can be used in the component
implementations and that will produce errors in the
simulation when using the technology presented above.
These errors can appear when a process, which was
blocked, is unblocked. The simulator will work correctly if
this is caused by an operation done in a channel by the
process running in the same processor at that moment. This
process will detect that another process is ready, and then
the decision of which one has to continue can be taken.
However, if this process is not the one which awakes the
blocked process, it cannot be solved and new techniques are
required.

Software timers and alarms can induce a process to pass
to the ready state independently of the actions of the running
process. They cannot be simulated with the previous
technique, but they can be modeled taking into account their
predictability. When the timer is set, it is well known when
it will be delivered. Thus, when a segment is simulated the
preemption can be predicted. The time estimation of the
segment is calculated dynamically, so the process execution
can be stopped at the exact point when the timer will awake.

However, when the process is awoken by an external
event, it cannot be modeled in that way. For example, these
events can be interruptions or receptions of values in
blocking channels. In this case, the event is unpredictable
when the segment starts, so the execution cannot be stopped
at the right time.

IV. ACCURATE MODELING OF GLOBAL VARIABLES
The analysis of the current method of simulation

presented above shows that modeling preemption in timed
simulations with segment time estimations could produce
incorrect results. This problem can be tackled in two
different ways. On the one hand, it can be interesting to try
to obtain a process simulation order as close as possible to
the real implementation. On the other hand, we can only
ensure data coherency to obtain correct functional results.
Thus, we only have to guarantee that read and write

accesses to asynchronous communication mechanisms (such
as global variables) are done in the right temporal order.

Summarizint the ideas presented in Section III, the
problem occurs because the segment code is executed in
zero time at the beginning of the segment and, afterwards,
the estimation of their temporal cost is applied to the
simulation using a wait statement. Thus, certain events
(timers or I/O data) that are received during segment
executions in the real implementation are executed in
parallel with the wait statement in the simulation. This
means that the part of the segment, which should be
executed after the event, has already been executed. Thus, if
the response to the event modifies the values of the
variables used by the segment that was previously executed,
this simulation may be wrong.

The first option is to reduce the part of the segment
executed that should be run before the event arrival. The
second option avoids the problem because the segment does
not use any variable that could be modified by the event
response. Just before these shared variables are accessed,
the current segment ends and a new one starts with this
access. This method allows the execution of the event
handler between these two segments and, thus, the value of
the variable is correct when used.

These two options can be explained with the example in
figure 1. Figure 2 shows the real order of execution of the
two-process code, the result os simulating with the standard
model and the possible solutions.

Write Read Access

Executing Not executing Variable

0
10

30
40
50
60

20

REAL CASE 1 CASE 2

 Task1-Task2 Task1-Task2 Task1-Task2 Task1-Task2

Time (us)

Var Var
Var

PREVIOUS
MODEL

Var

OK: read
after write

Error: read
before write

OK: read
after write

OK: read
after write

70
80
90

Er
ro

r Er
ro

r

Figure 2. Communication using a global variable.

In the real implementation, task 1(T1) starts its execution
at t=0us and task 2(T2) is waiting for a timer. The timer is
released at t=20us. Then, T1 is preempted and T2 is
executed, writing in the variable. After that, T2 is blocked
waiting for a new I/O datum. Then, T1 runs again, and reads
the value of the global variable. At t=55us the external
datum is provided, T1 is preempted and T2 continues its
execution. T2 writes the new value in the variable and
finishes. Finally, T1 reads it for a second time and the
example ends.

If the previous simulation model is used, T1 starts the

segment execution at t = 0 ns and finishes at t = 60 us. The
segment is completely simulated at the beginning and then
the wait statement is executed. Thus, T2 is not actually
executed until the segment finishes, so the two interruptions
are evaluated at t= 60 us and t = 80 us. The variable is read
before the values are stored, so the execution is wrong.
Furthermore, the two accesses always obtain the same
value, so the process execution cannot be verified because
the test bench cannot provide two different values to T1.

The first solution presented obtains an execution trace
which is as realistic as possible. To do this, we verify each
10 us if there has been an event. Thus, at t=20us the timer
expiration is detected, and at t = 60us the external data
arrival is captured. Then, T2 executes correctly the first time
and nearly the second time. Thus, the functional result is
correct and the temporal error is very low.

The second solution is to ensure the coherence in the
values that are read and written in the variable. This causes
the process to be running until t = 35 us. At this time, the
variable has to be read, but it is detected that an interruption
has been raised. Thus, T2 is executed before the datum is
obtained. It is repeated at t = 75us. With this method, the
result is also correct.

Once the two points of view from where the problem can
be tackled has been presented, their implementations,
advantages and disadvantages will be discussed.

The first approach is based on dividing each segment into
several segments to reduce the code executed before event
management. For this, a maximum value is defined for the
temporal cost of the segments. Then if a segment requires a
longer time, it is divided into segments of equal or less
duration than the maximum value. This technique ensures
that the code executed in the wrong order is limited by a
known and adaptable value, and the errors that can appear
are minimized.

This solution produces a very flexible interval-slicing
technique. The maximum interval can vary from a very
large interval to a very short one. If the interval is close to
the time estimation of the largest segment, the simulation is
modified slightly. Only very large segments, where errors
are more probable, are divided. This means that the
simulation overhead is reduced to a minimum value.

If the interval is less than or equal to the temporal cost of
the source code basic operations, the simulation is
completely modified. The segment concept disappears and
each operation is executed in the same simulation time as in
the real implementation. Thus, the simulation is very exact
and no errors in the execution order can occur. However the
simulation overhead is very high. Summarizing, the
definition of a maximum interval defines the granularity of
the simulation.

Apart from the reduction of the error, this method
produces execution diagrams that are very close to reality. It
also presents three advantages. It is a completely automatic
technique. No changes have to be made in the software
code. The technique is very flexible, because it is very easy
to adapt the simulation to the desired accurate-overhead
factor. This method also supports the change of the
granularity during the simulation.

However, this method presents two disadvantages. First,

it produces an important overhead of the simulation time.
The limitation of the maximum segment time means that
those segments larger than the limit are subdivided, and
thus, the number of segments is increased. Between the end
of a segment and the beginning of the next one, the
SystemC kernel is executed, and it takes an important time.
If the number of segments is increased, the number of
kernel executions is higher too and the simulation time
increases. Thus, this overhead is proportional to the segment
limit value, and better simulations require longer times.

Figure 3. Time-slicing technique

The other disadvantage is more critical. This method does
not ensure the coherence in the variable values. The
segment limitation reduces the probability of the inversion
of read and writes accesses, but it does not always eliminate
the problem. Depending on the value of the time segment
limit, the simulation can be correct or not.

To ensure the correct access order to the variable, the
other method presented at the beginning of the section is
needed. This method obliges the simulation to end the
segments before accessing the global variables. Then, the
occurrence of an external event is checked, and, in that case,
the preemption can be simulated, and the preempted process
does not read the variable until the event reaction has
finished. This means that the variable could be written
before the read access is done. Thus the simulation is
correct. However, the similarity of the task simulation flow
and the real execution times may not be as good as in the
previous method.

To implement this method, two possibilities are proposed.
The first one is to define a mark that has to be inserted in

the source code to enforce the end of the segments where
global variables are used. Placing this mark just before the
accesses, the communication points that are not
synchronized can be correctly modeled.

This technique presents the disadvantage that the mark

has to be placed every time an asynchronous
communication is done. This need can cause coding errors
because it is easy to forget to introduce a mark. Because of
this, the technique is not completely satisfactory. However it
can be useful to ensure the correct simulation of critical
points of the code, providing an alternative to the first
solution presented. Using this method, not all simulation is
adapted to the required granularity, limiting the maximum
errors in the time the tasks are executed, however, if only a
few critical points are actually interesting for this timing
analysis, it is a better solution. Furthermore, this method
increases the simulation time significantly.

The second option is the redefinition of these global
variables as a new kind of channels. Then, every channel
access can be done in the correct time. Furthermore, this
solution guarantees the support of the orthogonality of
communication and functionality, with the advantages that
this provides. The technique completely solves the problem
of the coherence of global variable values with minimum
modifications in the source code and without a notable
simulation overhead.

To implement this, a new channel has to be provided.
This channel has the same behavior as a common variable,
but every read and write access makes the current segment
finish and the time is annotated. Thus, the access is done at
the beginning of a new segment, and therefore, in the exact
temporal point.

Solution 1:

Handler:
...
PLACE_IN_TIME
glob_var = *(int*)0x1000;
…

Process:
...
PLACE_IN_TIME
local_var=glob_var;
…

Global code:
int glob_var;

Solution 2:

Handler:
...
glob_var = *(int *)0x1000;
…

Process:
...
local_var=glob_var;
…

Global code:
GLOBAL_VAR(glob_var)

Figure 4. Global variable management.

With these three solutions the problem of modeling
asynchronous events in software components with priorities
and preemption scheduling is solved. These solutions are
independent of the method used to implement the model of
the rest of characteristics of the environment where the
components will be executed.

V. RESULTS
These three solutions have been implemented in

PERFidy[9], and the results obtained are as expected. About
functionality, the use of the solutions proposed, specially the

Time (us)

Task 1
Priority 1

Task 2
Priority 2

T= 0

T=20

T=30

T=40

T=50

T=10

∆T= 0
∆T= 10

∆T= 10

Simulation
time

Estimation

Expected
preemption

Events

Predictable:
Timeout
expiration
T=20

Prediction

T=70

T=80

T=60

T=90 ∆T= 10

∆T= 10
Unpredictable:
Hardware
interrupt T=55

Delayed
preemption

Code
execution

Time
annotation

∆T= 10

∆T= 10

Delayed
preemption

∆T= 0
∆T= 10

∆T= 0
∆T= 10

∆T= 0
∆T= 10

∆T= 0

∆T= 10

∆T= 0
∆T= 10 ∆T= 10

last one, avoids all problems caused by the use of non-
synchronized communication.

The most important numerical result obtained in this
work is the relationship between the maximum segment
time defined in the first solution and the overhead in the
simulation time.

To obtain this, a model of a GSM coder[11] described in
SystemC has been used. From this example, and once the
suitable platform parameters are applied to the library, the
average value of the segment times has been found to be of
the order of hundreds of nanoseconds. The longest segments
are of the order of some milliseconds.

Therefore, to obtain good results, interval limits from 100
ms to 10 ns have to be tested. This range will analyze the
overhead form the case where no segments are subdivided
to the case where all segments are modified. The following
results have been obtained:

Time-slice Simulation Time

Original PERFidy 1.45 sec
100ms 1.52 sec
1 ms 1.68 sec
10us 2.47 sec
1us 10.89 sec

100ns 74 sec

Table 1: Time-slice interval vs simulation time.

This result shows that the time increment increases
exponentially. This is because the segment time distribution
is also exponential. This result confirms that this is not the
most suitable way to obtain the coherency in asynchronous
communication, because this requires very short segments
and then the simulation is very slow. However, it will be
useful to obtain better execution graphs, because the most
important errors are in the longest segments, and these can
be estimated more accurately with minimum overhead.

The comparation of time cost between PERFidy
simulation and other simulation mechanisms has been
presented in [9]. However, the comparation of the effect of
the mechanisms presented in this paper with other models is
difficult because preemption is usually not supported in that
way.

VI. CONCLUSION
In the development of real-time, embedded systems

(RT/E), the close relationship between hardware and
software necessitates the use of design methodologies where
systems can be developed as a whole, especially for
hardware dependent software (HdS).

The platform where the system will be implemented has
to be adequately modeled to obtain an optimum design.
Thus, both timing estimation techniques and modeling
operating system features are key elements for software
component development.

Mechanisms provided by SystemC are suitable for
specification and hardware development steps, however, for
software refinement, there is a lack of features that has to be
overcome.

In this context, modeling priorities and other scheduling

characteristics, such as preemption, at the same time as
temporal simulations based on segment techniques are used,
requires an accurate modeling of the events that are
unpredictable before the simulation starts.

In this paper, asynchronous events have been suitably
handled, independently of the method used to model
priorities or temporal costs.

One technique is based on the definition of a maximum
interval of time for code blocks that are analyzed as a single
element. This technique is useful to obtain timing analysis
of task flows, but not to ensure the coherence of global
variables. Furthermore, when the time limit is reduced, the
simulation overhead is very important.

To guarantee the correct use of asynchronous
communications, another two methods are proposed. The
first one is based on the manual insertion of marks that
oblige executing the accesses at the correct time. This
technique has the disadvantage that many code
modifications can be needed, and thus it is error prone.
However, it can also be used as a complement to the first
technique.

The last technique is based on the identification of this
global variables and their redefinition as channels. This
method is more effective than the previous one and ensures
the coherency of values with a minimum overhead.

REFERENCES

[1] “International Technology Roadmap for semiconductors,
2003 Edition: Design”, http://public.itrs.org.
[2] A. Sangiovanni-Vincentelli and G. Martín: “Platform-
based design and software design methodology for
embedded systems”, IEEE Design and Test of Computers,
November-December, 2001.
[3] G. Martín and F. Schirrmeister: “A design chain for
embedded systems”, IEEE Computer, March, 2002.
[4] S. Yoo and A. Jerraya: “Introduction to hardware
abstraction layers for SoC”, proc. of DATE’03, IEEE, 2003.
[5] T. Grötker, S. Liao, G. Martín and S. Swan, “System
Design with SystemC”, Kluwer, 2002.
[6] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi
and M. Poncino: “ SystemC cosimulation and emulation of
multiprocessor SoC designs”, IEEE Computer, April, 2003.
[7] S. Yoo, I. Bacivarov, A. Bouchima, Y. Paviot and A.
Jerraya: “Building fast and accurate SW simulation models
based on hardware abstraction layer and simulation
environment abstraction layer”, proc. of DATE’03, IEEE,
2003.
[8] A. Gerstlauer, H. Yu and D.D. Gajski: “RTOS modeling
for system-level design”, ”, in A. Jerraya, S. Yoo, D.
Verkest and N. Wehn (Eds.), Embedded Software for SoC,
Kluwer, 2003.
[9] H. Posadas, F. Herrera, P. Sánchez, E. Villar and F.
Blasco. “System-level performance analysis in SystemC”.
Proc. of DATE, IEEE, 2004
[10] F. Herrera, V. Fernández, P. Sánchez and E. Villar.
Chapter "Embedded Software Generation from SystemC for
Platform Based Design" of "SystemC Methodologies and
Applications", Kluwer Academic Publishers. 2003-01
[11] EN 301.245, ETSI, December, 1997.

